
Automatic Bilingual Legacy-Fonts Identification and

Conversion System

Gurpreet Singh Lehal
1
, Tejinder Singh

2
, and Saini Pretpal Kaur Buttar

1

1 DCS, Punjabi University, Patiala,

India

2 ACTDPL, Punjabi University, Patiala,

India

{gslehal, preetpalkaur15}@gmail.com, tej@pbi.ac.in

Abstract. The digital text written in an Indian script is difficult to use as such.

This is because, there are a number of font formats available for typing, and

these font-formats are not mutually compatible. Gurmukhi alone has more than

225 popular ASCII-based fonts whereas this figure is 180 in case of

Devanagari. To read the text written in a particular font, that font is required to

be installed on that system. This paper describes a language and font-detection

system for Gurmukhi and Devanagari. It also explains a font conversion system

for converting the ASCII based text into Unicode. Therefore, the proposed

system works in two stages: the first stage suggests a statistical model for

automatic language-detection (i.e., Gurmukhi or Devanagari) and font-

detection; the second stage converts the detected text into Unicode as per font

detection. Though we could not train our systems for some fonts due to non-

availability of font converters but system and its architecture is open to accept

any number of languages/fonts in the future. The existing system supports

around 150 popular Gurmukhi font encodings and more than 100 popular

Devanagari fonts. We have demonstrated the effectiveness of font detection is

99.6% and Unicode conversion is 100% in all the cases.

Keywords: n-gram language model, Gurmukhi, Devanagari, Punjabi, Hindi,

fonts, font detection, font conversion, Unicode.

1 Introduction

The text on the Internet is available in numerous languages and encodings. These

encodings are often not based on any standards. In any NLP application for Indian or

any other language, the input text can be processed only after knowing its language

and the underlying font-encoding. In many cases this language-encoding is not known

in advance and has to be determined. This problem can be viewed as font as well as

language identification problem. For languages like Punjabi, Hindi and others, there is

no standard font encoding followed by everyone. A large amount of digital text

9 Research in Computing Science 86 (2014)pp. 9–23

written in Indian languages is in ASCII-based font-formats. It has been found there

are many fonts which belong to the same keyboard-mapping, which can be grouped

together. Gurmukhi alone has more than 225 popular ASCII-based fonts with 41

keyboard-mappings. In Devanagari, there are more than 180 popular Devanagari

ASCII-based font-formats and with 52 different keyboard-mappings. According to

Raj and Prahallad[3] the problem of font-identification could be defined as: given a

set of words or sentences, identify the font-encoding by finding the minimum distance

between the input glyph codes and the models representing font-encodings.

To solve this problem of mutual incompatibility among various ASCII-based font-

formats, Unicode was developed as a standard that would assign a unique number

known as a code point to every letter in every language. But still the popularity of

Unicode is not fully accepted. There are some reasons for this:

─ Lack of awareness

─ Typing issues in Unicode standards

─ Non availability of Unicode typing tools for Indian language

─ Media Printing/Publishing houses do not have full support for Unicode

─ Lack of variety in Unicode fonts for Indian Languages

In order to find a solution of this problem, we have developed an automatic system to

bridge the gap between legacy-fonts and Unicode. Currently, it is working on

Gurmukhi and Devanagari languages, but the system and its architecture is open to

accept any number of languages/fonts in the future. The proposed system works in

two stages: the first stage suggests a statistical n-gram model for automatic font-

detection as well as language-detection (i.e., Gurmukhi or Devanagari); the output of

this stage is ranked weighted list of trained fonts, from where the topmost font, which

has the maximum weight, is selected by the system as the detected font. The second

stage converts the text into Unicode as per detected font.

2 Related Work

The problem of font and language identification is addressed by many researchers in

the literature [1-5]. The earliest approaches used for automatic language identification

were based on unique strings. The proposed mathematical language models relied on

orthographic features like characteristic letter sequences and frequencies for each

language.

Singh and Gorla [5] presented their work on identifying the languages and

encodings of a multilingual document. It involved the steps of monolingual

identification, enumeration of languages and then identification of the language of

every portion. For enumeration, they have been able to get a precision of 96.20%. Raj

and Prahallad [3] have discussed the Term Frequency - Inverse Document Frequency

(TF-IDF) weights based approach for font identification. They have modeled a vector

space model and TF-IDF weights for each term in the font-data according to its

uniqueness. In experiments, they have demonstrated the effectiveness of font data

conversion to be as high as 99% on 10 Indian languages and for 37 different font-

10

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

types. As described earlier, this font size is very small as compared to our research

problem.

Font identification in monolingual, bilingual or multilingual system can be seen as

a classification task. Like other NLP tasks, we can think of using some sophisticated

pattern classification technique such as maximum entropy, for solving this task. But

maximum entropy would require training and testing data which is not easy to prepare

in our case. As described by Lehal et al. [2], [5] we found that a simpler n-gram

model based similarity method is more suitable for this purpose. The advantage of

this method is that only a small amount of training data per font-encoding is enough

and yields excellent results without using any specially selected features.

3 Problem Complexity

The lack of a standard poses difficulties in processing text written in some non-

standard font-formats. The major issues we found are:

 There is no uniform mapping of a character to a code value in Indian languages.

Most Indian language fonts assign different codes to same character. For example,

consider the word ਪੰਜਾਬੀ, it is internally stored at different keys in different fonts

as shown in Table 1.

Table 1. Internal representation of word ਪੰਜਾਬੀ /punjabi/ in different Gurmukhi fonts.

 There is no standard which defines the number of glyphs per character or word in

that language, and hence it differs between fonts of a specific language itself. The

glyphs are shapes, and when 2 or more glyphs are combined together, they form a

character in the scripts of Indian languages. The underlying codes for the

individual characters are according to the glyphs they are broken into. This

problem is more prevalent in Devanagari as compared to Gurmukhi fonts. The

decomposition of glyphs and the codes assigned to them are both different in

Devanagari. Table 2 shows how the same word is internally coded in two separate

Devanagari fonts, viz., Chanakya and DV-TT-Surekh. In Chanakya, it was five

character codes whereas it used seven character codes for same words in DV-TT-

Surekh.

Sr. Font ASCII Character Code

1 Akhar 112, 077, 106, 119, 098, 073

2 Gold 102, 046, 117, 106, 087, 103

3 AnandpurSahib 112, 181, 106, 059, 098, 073

4 Asees 103, 122, 105, 107, 112, 104

5 Sukhmani 080, 094, 074, 065, 066, 073

6 Satluj 234, 179, 220, 197, 236, 198

11

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

Table 2. Code mapping for Devanagari word स्थिति into two different fonts.

Font Chanakya DV-TT-Surekh

Char Code 231 83 205 231 204 202 186 108 201 202 105 201

 The third problem is that there is no standard procedure to align the characters

while rendering. For example, consider the Gurmukhi word ਨ ੰ . The order of

rendering the glyphs can be: first pivotal character, then bottom character, and then

top character; or the top character can be rendered before the bottom character.

However, Unicode allows only specific sequence of rendering and hence, some

rendering may not be supported in Unicode text and needs to be handled in the

final output as shown in figure 1.

n + ¨ +

µ
= n¨µ

n + µ +

 ¨

= n¨µ (Not in Unicode)

Fig. 1. Different orders of rendering in Gurmukhi fonts.

4 The Proposed System

The proposed system supports around 150 popular Gurmukhi font-encodings and

around 100 Devanagari font-encodings. Some of the popular fonts supported are

Akhar, Anmol Lipi, Chatrik, Joy, Punjabi, Satluj, Chanakya, Agra, DV-TT-Yogesh,

KrutiDev, Shusha, etc. A detailed analysis of font encodings showed that many fonts

belonging to same keyboard-map have same internal mappings for all the characters.

For example, Akhar and Akhar2010 font belong to same keyboard-map family. In

fact, we analyzed that all these fonts correspond to 81 unique keyboard-mappings.

The Gurmukhi fonts correspond to 41 keyboard-mappings and Devanagari fonts

correspond to 40 keyboard-mappings. It means, if k0, k1 k80 be the 81 keyboard

mappings and f0, f1 f250 be the fonts, then each of fonts fi will belong to one of the

keyboard mapping ki. The problem is thus reduced from 250 distinct fonts to just 81

group classes corresponding to each keyboard map. Therefore, our font detection

problem is to classify the input text to one of these 81 keyboard mappings. It could be

thought of as an 81 class pattern recognition problem. The system for font-detection is

based on character-level trigram language model (figure 2).

A raw corpus of around 66,000 words for Gurmukhi and 50,000 words for

Devanagari has been used for training the system. Corresponding to each keyboard-

map, trigrams have been trained. Font identification is done by extracting the

character-level trigrams from the input text and then a score is calculated for each

12

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

keyboard-mapping which indicates the probability of the keyboard-mapping to be the

font of the input text. The keyboard-map having maximum score is identified as the

font of the input text and conversion to Unicode text is then performed.

Fig. 2. Framework for font detection and conversion.

4.1 The Proposed Data Structure

Language and encoding are closely interconnected in such a way that if we could

identify the font-encoding, we would most probably have also identified the language.

The font detection problem is formulated as character level trigram language model.

The single font has 256 character code points. Therefore, in a trigram model,

256x256x256=256³ code points need to be processed for a single keyboard map. But

in order to deal with 81 distinct keyboard maps, the memory requirements will further

increase to process and hold 81x 256³ code points. After detailed analysis, it has been

found that the array representation of this task is sparse in nature i.e. the majority of

code points in omni fonts have zero values. It has been observed that each keyboard

map has around 26,000 non-zero code points which is 0.156% of the original code

points. Hence, to avoid sparse array formation, binary search tree representation has

been created. Each node of the tree contains single unique trigram that exists in one or

more of the keyboard-mappings' training data. Every tree node has a linked list

associated with it. Each node of this list contains the keyboard-mapping number (k0,

k1, ..., k80) of the training data in which the corresponding trigram exists and the

probability of the trigram in the training data of that keyboard-mapping. The

structures of the nodes are expressed in figure 3.

The total number of nodes in the tree are 4,41,648. The height of the tree is 80. The

shortest list linked to a node in the tree has length 1, i.e., the shortest linked list

Word corpora for

Gurmukhi and

Devanagari

Keyboard-mappings

k0, k1,, k80

Character-level

Analysis

Font detection

and conversion to

Unicode

Trigram

Language Model

Mapping

tables

Gurmukhi or

Devanagari

ASCII-based

input text

Unicode text

13

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

contains 1 node. The longest node contains 76 nodes. The average number of nodes in

the linked lists is found to be 4.

The major advantage of using this representation is performance enhancement. As

we know, searching in a binary search tree is faster as compared to that in a linked

list. The structure is dynamic, as the lists linked to the nodes of the trees have their

sizes dependent on the number of fonts which have non-zero probability of the

trigram stored at the node. In other words, length of the list of fonts is not fixed to be

equal to the total number of fonts. This is because most fonts can have non-zero

probability for that trigram at the node. Moreover, by combining the list of those fonts

in which the trigram stored at the tree-node exists, we access the probabilities of that

trigram in all the fonts right there. Additionally, this architecture is open to add more

language/fonts without affecting the performance.

Fig. 3. Binary search tree node structure.

Adding Tree Node: To store trigrams and their probability in the data structure,

the tree is searched for each trigram one by one. Let us suppose, the tree is being

searched for the trigram (0, 104, and 108). If the trigram is found in the tree, we

access the linked list of that trigram and add a new node containing the font number

and the probability of that trigram in that font. If the trigram is not found, a new node

of the tree is created containing that trigram and a linked list containing the font

number and probability of the trigram.

Searching the Binary Tree: Suppose, we have a word ਕਲਮ, whose font is to be

detected. First, the system will break down this word into trigrams. Then, the system

will search for each trigram in the binary search tree one by one. Thus, first it

searches for the trigram (0, 0, and 107). On finding the trigram, it goes to the list

linked with that trigram's node. There it finds the probabilities of that trigram in all

the fonts from 0 to 80. For example, the trigram (0, 0, and 107) has non-zero

probabilities in the font-numbers 1, 2, 11, and 23 which are 0.2434, 0.435, 0.04364,

and 0.06433 respectively. For all the other fonts, probability of this trigram is

considered to be zero. Similarly, the system searches all other trigrams and collects

their probabilities.

14

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

5 Font Detection

The task of font detection can be classified as an n-gram based text similarity method.

The advantage of this method is that only a small amount of training data per font

encoding is enough to get the desired results. As discussed earlier we have created a

raw corpus of around 50000 words for training the system. The proposed methods of

font detections are:

─ Word level prediction

─ Character level prediction

─ Hybrid Approach using Unseen probability

The following two methods have been used to calculate the score of a keyboard-

mapping for the prediction of font of the input text.

5.1 Word Level Prediction

The trigram probability of a word w
l
 of length l is calculated as a product of trigram

probability for all possible combinations as shown in equation 1. Clearly, if any

trigram has zero probability then the probability of the word becomes zero. The total

probability of the input text of n words, for defined keyboard-mapping k is calculated

as sum of all words probabilities as shown in equation 2 and the best prediction for

keyboard-mapping index is detected corresponding to the maximum weight of

probability as shown in equation 3.

w
l
 = ∏ 𝑃(𝑐𝑖 | 𝑐𝑖−1 , 𝑐𝑖−2)𝑙

𝑖=1 (1)

Wk = 𝑤1,𝑛 = ∑ 𝑤𝑙𝑛
1 , (2)

K = argmax Wk (3)

For example, consider a sentence of four words ਪਾਣੀ ਵਿਅਰਥ ਨਾ ਿਹਾਓ. In the word

level prediction, the probability of the word ਪਾਣੀ can be calculated as:

w
4
= ∏ 𝑃(𝑐𝑖 | 𝑐𝑖−1 , 𝑐𝑖−2)4

𝑖=1 = 0.009001276 * 0.000873424 * 0.000085518

* 0.000198584 * 0.000591988 * 0.023062862 = 1.822875e-18

Similarly, the total probabilities of remaining three words are calculated and the

overall probability of the whole sentence is:

W1 = w1,4 = 1.822875e-18 + 8.063544e-28 + 2.290603e-10 + 4.744855e-28

= 2.290603e-10

In this way, the probability of all input words is calculated for all trained fonts and the

detected keyboard-mapping index pops up corresponding to the maximum weight of

probability.

15

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

5.2 Character Level Prediction

Unlike word level prediction, this method considers all trigram probabilities at

character level not at word level. In other words, the total probability of the input text

for keyboard-mapping k is calculated as sum of all valid trigrams of the input text as

shown in equation 4 and the detected font index is corresponding to the maximum

weight of probability as K = argmax Ck.

Ck = ∑ 𝑃(𝑐𝑖 | 𝑐𝑖−1 , 𝑐𝑖−2)𝑛
𝑖=1 , (4)

Using the same example as given above, there are 23 trigrams corresponding to

sentence of four words and the probability of the text comes out to be:

C1 = ∑ 𝑃(𝑐𝑖 | 𝑐𝑖−1 , 𝑐𝑖−2)23
𝑖=1 = 0.102334869

5.3 Hybrid Approach using Unseen probability

Unseen Probability factor (Bk). The above two methods detect the probability of the

input text in the training data. On the other hand, we can think of another way out to

calculate the probability, i.e., how much of the input text does not belong to the

training data. This can be seen as a probability of unseen trigrams. We can quantify

this by using a variable ‘Bck’ for each trained font, initialized to 0, which is

incremented by one for an unseen trigram, as shown in equation 5. Then the unseen

probability can be calculated with the equation 6.

Bck = ∑ 1𝑖∶𝑃 (𝑐𝑖 | 𝑐𝑖−1 ,𝑐𝑖−2)=0 (5)

Bk = 1 – [Bck / (Total number of trigrams)] (6)

Now, the two proposed methods have been configured to incorporate unseen

probability factor, so that each contributes towards the final selection. Now, the

overall probability of the word- and character-level methods will be combined as

shown in equation 7 and 8 respectively. The value of α is used to determine each

factor’s contribution towards the final outcome.

K = argmax (α * Wk + (1 - α) * Bk) , where 0 ≤ α ≤ 1 (7)

K = argmax (α * Ck + (1 - α) * Bk), where 0 ≤ α ≤ 1 (8)

It has been concluded from the test results that the hybrid methods gave more

accurate results when the value of α was kept equal to or slightly less than 0.3. That

is, the unseen-trigram factor was contributing more towards the oveall probability.

6 Language Detection

The total number of keyboard-mappings supported by the system is 81. The keyboard

mappings ranging 0 to 40 correspond to Gurmukhi fonts and the rest 41 to 80

correspond to Devanagari. Thus, the language of the input text is Punjabi, if the

16

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

detected keyboard mapping is lying anywhere in the range 0 to 40, and Hindi if

otherwise.

7 Conversion to Unicode

Unicode conversion is performed by mapping all fonts to a single intermediate form

with the help of mapping tables generated for each font. Then, the rule based

approach is followed for conversion of text from intermediate form to Unicode. Many

rules have been formulated for proper rendering of text in Unicode format. The steps

for font-data conversion are explained as follows:

7.1 Mapping Tables and Intermediate Form

For performing the conversion of input text into Unicode text on the basis of detected

font encoding, first, a mapping table of the detected font encoding is used. The

mapping tables are static alignments between all font glyphs and an intermediate

form. The intermediate form is a list of all the glyphs which exist in a particular

language. These glyphs are assigned an internal code. A codepoint corresponding to a

gylph in a font is mapped to an internal code corresponding to the same glyph in the

intermediate form. In this manner, the mapping tables have been built for all the

trained fonts. The advantage of using intermediate form is that it reduces the

complication, as we have to create less number of rules because similar glyphs are

mapped onto single internal code in the intermediate form.

For example, consider the Chanakya font's glyph % and another glyph

combination ˆÙ which means the same, but there is minor difference in shape. But

Unicode transformation of both the glyphs is same. Hence, these types of glyphs are

treated as one in our intermediate and Unicode transformations. Also, it is easy to add

a new font to the system as we need only a training file and a mapping table of that

font. There is no need to create new transformations rules for the newly added font as

transformation to Unicode is not done directly from font to Unicode, but from

intermediate form to Unicode. We only need to build a trigram-probability training

file and a mapping table for the new font.

The input text written in the detected font is converted into the intermediate form

using the mapping table for that font.

7.2 Intermediate Form to Unicode Conversion

The next step is the conversion of intermediate form into Unicode text. The

conversion to Unicode is not straight forward due to complex Unicode transformation

rules. We have crafted various conversion rules to perform this transformation.

17

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

Handling full characters in Devanagari fonts. In some Devanagari fonts, there are

no separate glyphs for full-characters. They are formed by combining other glyphs

together. For example, in APS-C-DV-Prakash font,

Similarly, other glyph combinations are formed, such as:

To handle such combinations, rules have been formulated, for example, we know

that a half-character cannot be combined with a matra, it exists only in conjunction

with a full-character. Thus, if there exists a half-character in combination with a

matra i.e., ा , ा , or ा , then it should be converted into the corresponding full-

character applying corresponding matra, if any, such as none, ा , ा respectively.

Transforming Long Vowels. Next, rules have been devised for transforming

Gurmukhi long vowels ਉ[ʊ], ਊ[u], ਓ[o], ਆ[ɑ], ਇ[ɪ], ਈ[i], ਏ[e], ਐ[æ], ਔ[Ɔ]. This

is because, in Unicode these nine independent vowels with three bearer characters Ura

ੳ[ʊ], Aira ਅ [ə] and Iri ੲ[ɪ] have single code points and need to be mapped

accordingly as shown in Figure 5. Similarly, Devanagari independent long vowels

आ[ɑ], ई[i], ऊ[u], ऍ[eɪ], ऐ[æ], ऑ[ɒ], ओ[o], औ[Ɔ] with four bearer characters अ[ə],

इ[ɪ], उ[ʊ] and ए[e], and short vowel ा [ɒ] were mapped accordingly.

Rendering half-character in Unicode. There are no explicit code points for half-

characters in Unicode. They will be generated automatically by the Unicode rendering

system when it finds special symbol called halant or virama [੍]. Therefore,

Gurmukhi/Devanagari transformation of subjoined consonants is performed by

prefixing halant ੍ symbol along with the respective consonant, as shown in Figure 4.

Handling of short vowel ਵ੍. Mapping of short vowel sign ਵ੍[ɪ] has been done

according to Unicode rendering system. The Unicode transformation becomes

complex when short vowel ਵ੍[ɪ] and subjoined consonants come together at a single

word position.

18

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

Fig. 4. Unicode transforming rules.

Fig. 5. Complex Unicode transformations.

For example, consider the Gurmukhi word ਵਪਰੰ ਸ .In omni fonts, [स्ा] appears as the

first character. But according to Unicode rendering, it must be after the bearing

consonant. Therefore, it must go after the subjoined consonant ा + ਰ, as shown in

Figure 5.

Similarly, when half-character comes in between [स्ा] and a full-character, then

according to Unicode rendering system, half-character must be written first, then the

full-character and [स्ा] at the last position as shown in the word अस्थिि in Figure 5.

Other Issues. Some Devanagari fonts consist of glyphs depicting some combinations

of matras, such as . Consider the word शर्ििंद this word uses matra . In

19

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

order to handle this word as per Unicode rendering, the following rule-based

transformations are done:

Fig. 6. शर्ििंद Word transformations while converting to Unicode.

In Unicode, there are no explicit glyphs for rendering complex consonants, such as

क्ष, श्र etc. These are generated by using combinations of consonants with halant (ा)
as shown in Figure 7.

Fig. 7. Rendering of complex consonants in Unicode.

8 Evaluation and Results

8.1 Test Data Preparation

For evaluation purpose, we collected random text written in Gurmukhi and

Devanagari from 27 different sources, for example, AmarUjala, BBC Hindi News,

Punjabi Tribune, etc. The data was categorized under five sections namely, articles,

books, news, poems and stories. For each section, 4 sets of about 1000 words each

were prepared for each trained font. The fonts for which real ASCII-based data was

not available, font-converters were used to convert Unicode text into font-data.

8.2 Font Detection Results

All the methods are then tested over the input-text and the results of font detection

among proposed methods are shown in Table 3. Clearly, character-level prediction

20

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

method has shown better results in both Gurmukhi as well as Devanagari font

detection as compared to word-level prediction.

Table 3. Font detection accuracy of different methods.

Data Set

Domain

(200 words)

Word-level Char-level Hybrid Word-level

(α=0.3)

Hybrid Char-level

(α=0.3)

Gur Dev Gur Dev Gur Dev Gur Dev

Articles 51 75 95 90 100 98 100 100

Books 51 68 83 93 98 100 100 100

News 76 78 66 90 100 100 100 100

Poems 51 73 73 90 98 98 98 100

Stories 78 50 76 90 98 100 100 98

The hybrid approach has shown the overall improvement in font detection as

compared to single method approach. Unseen probability factor has shown better

results. The optimal value of system combination factor α is found to be 0.3. Again, it

has been found that hybrid character-level method is the best among all the other

methods we have discussed. The average detection results of this method are 99.6%

for both Gurmukhi and Devanagari fonts. It is also come out from the results that the

proposed n-gram approach with limited training data has successfully overcome the

confusion amongst Gurmukhi and Devanagari fonts. It has been found that for the

input text of any size, we need at most first 200 words for the task of font-detection.

This factor contributes towards the improvement of performance of the system.

Fig. 8. Font detection accuracy of different methods.

Conversion Accuracy of the system is found to be 100% in all the test data.

0

20

40

60

80

100

120

Gur Dev Gur Dev Gur Dev Gur Dev

Word-level Char-level Hybrid Word-level Hybrid Char-level

Articles Books News Poems Stories

21

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

Font Detection vs. Input word length. The figure 8 shows the trend of detection of

Gurmukhi and Devanagari fonts when varying number of most frequent words in a

language are taken as input to the system. The results shown in the following graph

are based on the best detection method.

Fig. 9. Comparison of font-detection at varying sizes of input-text.

The different word sizes are from 1 to 300 words with a random interval.

According to our observation the system is capable to identify 45% fonts correctly

with just single word as input. Next, with two input words, there is sharp rise in

Devanagari font detection from 45% to 70% while the Gurmukhi font detection is not

affected. There is nearly 70% detection in Gurmukhi fonts is when the input size is at

least six words. Unlike Devanagari fonts Gurmukhi fonts, detection decreases when

input words are increased from six to eight. In overall trend we can say that during the

input word size 1 to 70, the percentage of Devanagari font detection is always higher

than the Gurmukhi font detection and reverse trend is seen between input word sizes

greater than 70 to 125. Finally, it has been observed that input word size of around

200 words is reasonably sufficient for the system to give best detection results.

9 Conclusion

This paper describes a language and font detection system for Gurmukhi and

Devanagari. It also delineates a font conversion system for converting the ASCII

based text into Unicode. Hence, the proposed system works in two stages: the first

stage suggests a statistical model for automatic language detection (i.e., Gurmukhi or

Devanagari) and font-detection; the second stage converts the detected text into

Unicode. The existing system supports around 150 popular Gurmukhi font-encodings

and more than 100 popular Devanagari fonts. We have demonstrated the effectiveness

of font detection is 99.6% and Unicode conversion is 100% in all the cases. Though

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 10 15 20 30 50 70 100 150 200 300

P
e

rc
e

n
ta

ge
 o

f
fo

n
ts

 d
e

te
ct

e
d

Size of Input-text (Number of Words)

Devanagari

Gurmukhi

Combined

22

Gurpreet Singh Lehal, Tejinder Singh, and Saini Pretpal Kaur Buttar

Research in Computing Science 86 (2014)

we could not train our systems for some fonts due to non-availability of font

converters but system and its architecture is open to accept any number of

languages/fonts in the future without affecting its speed and performance.

References

1. Chaudhury, S., Sen S., Nandi, G.R.: A Finite State Transducer (FST) based Font

Converter. International Journal of Computer Applications, Volume 58, No. 17, pp. 35–39

(2012)

2. Saini, T. S., Lehal, G. S., Chowdhary, S.K.: An Omni-font Gurmukhi to Shahmukhi

Transliteration System, In: Proceedings of Conference on Computational Linguistics

(COLING), pp. 313–319, Mumbai (2012)

3. Raj, A.A., Prahallad, K.: Identification and Conversion of Font-Data in Indian Languages,

In: International Conference on Universal Digital Library (ICUDL2007), Pittsberg, USA

(2007)

4. Singh, A.K.: Study of some distance measures for language and encoding identification,

In: Proceedings of the Workshop on Linguistic Distances, Sydney, Australia, pp. 63–72,

ACL (2006)

5. Singh, A.K., Gorla, J..: Identification of languages and encodings in a multilingual

document. In: Proceedings of the 3rd ACL SIGWAC Workshop on Web As Corpus,

Lovain-la-Neuve, Belgium (2007)

6. Cavnar, W. B., Trenkle J. M.: N-Gram-Based Text Categorization, In: Proceedings of

SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, pp.

161–175 (1994)

7. Davis, M., Whistler, K. (Eds.): Unicode Normalization Forms. Technical Reports, Unicode

Standard Annex #15, Revision 33. (2010) Retrieved February 22, 2011, from

http://www.unicode.org/reports/tr15/tr15-33.html

8. Bharati, A., Sangal, N., Chaitanya, V., Kulkarni, A.P., Sangal, R.: Generating converters

between fonts semi-automatically, In: Proceedings of SAARC conference on Multi-lingual

and Multi-media Information Technology, CDAC, Pune, India (1998)

9. Kikui, G.: Identifying the coding system and language of on-line documents on the

Internet. In: Proceedings of Conference on Computational Linguistics (COLING), pp.

652–657 (1996)

23

Automatic Bilingual Legacy-Fonts Identification and Conversion System

Research in Computing Science 86 (2014)

http://www.unicode.org/reports/tr15/tr15-33.html

